skip to main content


Search for: All records

Creators/Authors contains: "Montjoy, Douglas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Inorganic particles are effective photocatalysts for the liquid-state production of organic precursors and monomers at ambient conditions. However, poor colloidal stability of inorganic micro- and nanoparticles in low-polarity solvents limits their utilization as heterogeneous catalysts and coating them with surfactants drastically reduces their catalytic activity. Here we show that effective photo-oxidation of liquid cyclohexane (CH) is possible using spiky particles from metal oxides with hierarchical structure combining micro- and nanoscale structural features engineered for enhanced dispersibility in CH. Nanoscale ZnO spikes are assembled radially on α-Fe2O3microcube cores to produce complex ‘hedgehog’ particles (HPs). The ‘halo’ of stiff spikes reduces van der Waals attraction, preventing aggregation of the catalytic particles. Photocatalysis in Pickering emulsions formed by HPs with hydrogen peroxide provides a viable pathway to energy-efficient alkane oxidation in the liquid state. Additionally, HPs enable a direct chemical pathway from alkanes to epoxides at ambient conditions, specifically to cyclohexene oxide, indicating that the structure of HPs has a direct effect on the recombination of ion-radicals during the hydrocarbon oxidation. These findings demonstrate the potential of inorganic photocatalysts with complex architecture for ‘green’ catalysis.

     
    more » « less
  2. null (Ed.)
  3. We propose and demonstrate low-refractive-index particles with all-dielectric metamaterial shell which lead to formation of high intensity photonic nanojets. We show that the extra degree of freedom because of the anisotropy of the shell gives rise to an increase in the photonic jet intensity inside the metamaterial shell without a need to increase the size of the particle. The anisotropy of the shell can also control the spectral and spatial location of the Mie-type multipolar resonances to achieve the desired scattering. In experiments, the metamaterial shell is composed of strong nonlinear materials leading to enhanced nonlinear wavelength conversion at nanoscale. 
    more » « less